Search results for "Cell Hypoxia"

showing 10 items of 84 documents

PHD3 Controls Lung Cancer Metastasis and Resistance to EGFR Inhibitors through TGFα.

2018

Abstract Lung cancer is the leading cause of cancer-related death worldwide, in large part due to its high propensity to metastasize and to develop therapy resistance. Adaptive responses to hypoxia and epithelial–mesenchymal transition (EMT) are linked to tumor metastasis and drug resistance, but little is known about how oxygen sensing and EMT intersect to control these hallmarks of cancer. Here, we show that the oxygen sensor PHD3 links hypoxic signaling and EMT regulation in the lung tumor microenvironment. PHD3 was repressed by signals that induce EMT and acted as a negative regulator of EMT, metastasis, and therapeutic resistance. PHD3 depletion in tumors, which can be caused by the EM…

0301 basic medicineCancer ResearchEpithelial-Mesenchymal TransitionLung NeoplasmsMice NudeAntineoplastic AgentsSMADDrug resistanceMetastasisHypoxia-Inducible Factor-Proline DioxygenasesMitochondrial Proteins03 medical and health sciencesErlotinib HydrochlorideMice0302 clinical medicineDownregulation and upregulationCell Line TumorTumor MicroenvironmentMedicineAnimalsHumansNeoplasm MetastasisLung cancerProtein Kinase InhibitorsEGFR inhibitorsbusiness.industryIntracellular Signaling Peptides and ProteinsCancerTransforming Growth Factor alphamedicine.diseaseHCT116 CellsXenograft Model Antitumor AssaysCell HypoxiaErbB Receptors030104 developmental biologyOncologyA549 CellsDrug Resistance Neoplasm030220 oncology & carcinogenesisembryonic structuresCancer researchFemaleErlotinibbusinessApoptosis Regulatory Proteinsmedicine.drugCancer research
researchProduct

Colorectal Cancer Cell Line SW480 and SW620 Released Extravascular Vesicles: Focus on Hypoxia-induced Surface Proteome Changes

2018

Background/aim Extravascular vesicle (EV) proteome closely reflects the proteome of the cell of origin. Therefore, cancer cell-derived EV proteomic analysis could help in identifying cancer biomarkers. This study's goal was to investigate hypoxia-induced proteomic changes in EV released from hypoxic human isogenic non-metastatic colorectal cancer cells SW480 and metastatic colorectal cancer cells SW620. Materials and methods EV were characterized by western blot, transmission electron microscopy, proteomic analysis using liquid chromatography time-of-flight-mass spectrometry and quantified by an label-free intensity-based absolute quantitation (iBAQ) approach. Results A total of 16 proteins…

0301 basic medicineCancer ResearchProteomeFocus (geometry)Colorectal cancerAdenocarcinomaExtracellular Vesicles03 medical and health sciences0302 clinical medicineWestern blotTandem Mass SpectrometryCell Line TumorBiomarkers TumormedicineHumansmedicine.diagnostic_testChemistryVesicleCancerGeneral MedicineHypoxia (medical)medicine.diseaseMolecular biologyCell HypoxiaNeoplasm Proteins030104 developmental biologyOncology030220 oncology & carcinogenesisProteomeCancer biomarkersmedicine.symptomColorectal NeoplasmsChromatography LiquidAnticancer Research
researchProduct

EphrinB2 repression through ZEB2 mediates tumour invasion and anti-angiogenic resistance.

2016

Diffuse invasion of the surrounding brain parenchyma is a major obstacle in the treatment of gliomas with various therapeutics, including anti-angiogenic agents. Here we identify the epi-/genetic and microenvironmental downregulation of ephrinB2 as a crucial step that promotes tumour invasion by abrogation of repulsive signals. We demonstrate that ephrinB2 is downregulated in human gliomas as a consequence of promoter hypermethylation and gene deletion. Consistently, genetic deletion of ephrinB2 in a murine high-grade glioma model increases invasion. Importantly, ephrinB2 gene silencing is complemented by a hypoxia-induced transcriptional repression. Mechanistically, hypoxia-inducible facto…

0301 basic medicineCell signalingScienceGeneral Physics and AstronomyRepressorDown-RegulationAngiogenesis InhibitorsEphrin-B2BiologyGeneral Biochemistry Genetics and Molecular BiologyArticleNeovascularization03 medical and health sciencesDownregulation and upregulationddc:570GliomamedicineGene silencingAnimalsHumansNeoplasm InvasivenessPsychological repressionZinc Finger E-box Binding Homeobox 2Regulation of gene expressionMice KnockoutMultidisciplinaryNeovascularization PathologicQGeneral ChemistryGliomamedicine.diseaseHypoxia-Inducible Factor 1 alpha SubunitXenograft Model Antitumor AssaysCell HypoxiaCell biologyUp-RegulationBevacizumabGene Expression Regulation NeoplasticMice Inbred C57BL030104 developmental biologyDrug Resistance Neoplasmmedicine.symptomNature communications
researchProduct

Monitoring of rheologic variables during postoperative high-dose brachytherapy for uterine cancer.

2004

Oxygenation of tumor tissue has recently been assed an important prerequisite for the effectiveness of radiotherapy in cervical cancer. Hyperviscosity is a common phenomenon in malignancy and a cause of reduced oxygen transport capacity that would favour tissue hypoxia. Hemorheological variables were serially tested preoperatively, during four cycles of fractionated adjuvant IR192 HDR after loading radiation (HDR-AL) of the vaginal vault (weekly intervals), and 6 months postoperatively in patients with cervical (n=12) and endometrial cancer (n=26). Women who were scheduled for benign tumor surgery served as controls (n=29). Preoperatively, in cervical and endometrial cancer patients, mean …

0301 basic medicineErythrocyte Aggregationmedicine.medical_specialtymedicine.medical_treatmentBrachytherapyBrachytherapyUrologyUterine Cervical Neoplasms030204 cardiovascular system & hematologyHysterectomy03 medical and health sciencesLeukocyte Count0302 clinical medicineUterine cancermedicineHumansAgedCervical cancerbusiness.industryPlatelet CountEndometrial cancerOxygen transportFibrinogenHematologyGeneral MedicineMiddle Agedmedicine.diseaseBlood ViscosityCombined Modality TherapyCell HypoxiaSurgeryEndometrial NeoplasmsRadiation therapy030104 developmental biologyHemorheologyVaginal vaultFemaleRadiotherapy AdjuvantbusinessBiomarkersClinical and applied thrombosis/hemostasis : official journal of the International Academy of Clinical and Applied Thrombosis/Hemostasis
researchProduct

MiR-675-5p supports hypoxia induced epithelial to mesenchymal transition in colon cancer cells

2017

// Viviana Costa 1, * , Alessia Lo Dico 2, * , Aroldo Rizzo 3 , Francesca Rajata 3 , Marco Tripodi 4, 5 , Riccardo Alessandro 6, 7, * , Alice Conigliaro 4, * 1 Innovative Technological Platforms for Tissue Engineering, Theranostic and Oncology, Rizzoli Orthopedic Institute, Palermo, Italy 2 Department of Pathophysiology and Transplantation, Universita degli Studi di Milano, Milano, Italy 3 Unita Operativa di Anatomia Patologica, Azienda Ospedaliera Ospedali Riuniti “Villa Sofia-Cervello”, Palermo, Italy 4 Dipartimento di Biotecnologie Cellulari ed Ematologia, Sapienza University of Rome, Rome, Italy 5 National Institute for Infectious Diseases L. Spallanzani, IRCCS, Rome, Italy 6 Dipartimen…

0301 basic medicinePathologymedicine.medical_specialtymiRNA675Epithelial-Mesenchymal TransitionTranscription GeneticColorectal cancerDown-RegulationMetastasiMetastasis03 medical and health sciences0302 clinical medicineGliomaCell Line TumormedicinemetastasisHumansEpithelial–mesenchymal transitionNeoplasm MetastasisLymph nodeMetastatic colon cancerCRC; EMT; Hypoxia; Metastasis; MiRNA675; Oncologybusiness.industryhypoxiaEMTHypoxia (medical)medicine.diseaseHypoxia-Inducible Factor 1 alpha SubunitCell HypoxiaCRCTransplantationDNA-Binding ProteinsMicroRNAs030104 developmental biologymedicine.anatomical_structureOncology030220 oncology & carcinogenesisColonic NeoplasmsCancer researchmedicine.symptombusinessResearch Paper
researchProduct

Modulating tumor hypoxia by nanomedicine for effective cancer therapy

2016

Hypoxia, a characteristic feature of tumors, is indispensable to tumor angiogenesis, metastasis, and multi drug resistance. Hypoxic avascular regions, deeply embedded inside the tumors significantly hinder delivery of therapeutic agents. The low oxygen tension results in resistance to the current applied anti-cancer therapeutics including radiotherapy, chemotherapy, and photodynamic therapy, the efficacy of which is firmly tied to the level of tumor oxygen supply. However, emerging data indicate that nanocarriers/nanodrugs can offer substantial benefits to improve the efficacy of current therapeutics, through modulation of tumor hypoxia. This review aims to introduce the most recent advance…

0301 basic medicinePhysiologymedicine.medical_treatmentClinical BiochemistryPhotodynamic therapy02 engineering and technologyPharmacologyBiologyMetastasis03 medical and health sciencesNeoplasmsmedicineHumansDrug CarriersNeovascularization PathologicTumor hypoxiaCell BiologyTumor OxygenationHypoxia (medical)021001 nanoscience & nanotechnologymedicine.diseaseCell HypoxiaNanostructuresOxygenRadiation therapyNanomedicine030104 developmental biologyTumor HypoxiaNanomedicinemedicine.symptomNanocarriers0210 nano-technologyJournal of Cellular Physiology
researchProduct

Hypoxia‐induced non‐coding rnas controlling cell viability in cancer

2021

Hypoxia, a characteristic of the tumour microenvironment, plays a crucial role in cancer progression and therapeutic response. The hypoxia-inducible factors (HIF-1α, HIF-2α, and HIF-3α), are the master regulators in response to low oxygen partial pressure, modulating hypoxic gene expression and signalling transduction pathways. HIFs’ activation is sufficient to change the cell phenotype at multiple levels, by modulating several biological activities from metabolism to the cell cycle and providing the cell with new characteristics that make it more aggressive. In the past few decades, growing numbers of studies have revealed the importance of non-coding RNAs (ncRNAs) as molecular mediators i…

0301 basic medicineRNA UntranslatedCellProliferationReviewlcsh:ChemistryTransduction (genetics)0302 clinical medicineNeoplasmsGene expressionBasic Helix-Loop-Helix Transcription FactorsTumor MicroenvironmentRNA NeoplasmHypoxialcsh:QH301-705.5SpectroscopyCancerGeneral MedicineCell cycleCell HypoxiaComputer Science ApplicationsCell biologyNeoplasm Proteinsmedicine.anatomical_structure030220 oncology & carcinogenesismiRNAscell cyclemedicine.symptomMiRNASignal TransductionCell SurvivallncRNAsBiologyCatalysisInorganic Chemistry03 medical and health sciencesmicroRNAmedicineHumansHIFViability assayPhysical and Theoretical ChemistryMolecular BiologyOrganic ChemistryCancerHypoxia (medical)medicine.diseaseLncRNA030104 developmental biologylcsh:Biology (General)lcsh:QD1-999
researchProduct

Molecular evolution of antioxidant and hypoxia response in long-lived, cancer-resistant blind mole rats: The Nrf2-Keap1 pathway.

2015

The Nrf2-Keap1 pathway is crucial for the cellular antioxidant and hypoxia response in vertebrates. Deciphering its modifications in hypoxia-adapted animals will help understand its functionality under environmental stress and possibly allow for knowledge transfer into biomedical research. The blind mole rat Spalax, a long-lived cancer-resistant rodent, lives in burrows underground and is adapted to severely hypoxic conditions. Here we have conducted a bioinformatical survey of Spalax core genes from the Nrf2-Keap1 pathway on the coding sequence level in comparison to other hypoxia-tolerant and -sensitive rodents. We find strong sequence conservation across all genes, illustrating the pathw…

0301 basic medicineRodentSpalaxNF-E2-Related Factor 2Molecular Sequence DataConserved sequenceEvolution Molecular03 medical and health sciencesbiology.animalNeoplasmsGene expressionGeneticsAnimalsAmino Acid SequencePeptide sequenceGeneConserved SequenceGeneticsKelch-Like ECH-Associated Protein 1030102 biochemistry & molecular biologybiologyMole RatsIntracellular Signaling Peptides and ProteinsGeneral Medicinebiology.organism_classificationPhenotypeKEAP1Cell HypoxiaRatsOxidative Stress030104 developmental biologySequence AlignmentGene
researchProduct

Hypoxia-Induced miR-675-5p Supports β-Catenin Nuclear Localization by Regulating GSK3-β  Activity in Colorectal Cancer Cell Lines

2020

The reduction of oxygen partial pressure in growing tumors triggers numerous survival strategies driven by the transcription factor complex HIF1 (Hypoxia Inducible Factor-1). Recent evidence revealed that HIF1 promotes rapid and effective phenotypic changes through the induction of non-coding RNAs, whose contribution has not yet been fully described. Here we investigated the role of the hypoxia-induced, long non-coding RNA H19 (lncH19) and its intragenic miRNA (miR-675-5p) into HIF1-Wnt crosstalk. During hypoxic stimulation, colorectal cancer cell lines up-regulated the levels of both the lncH19 and its intragenic miR-675-5p. Loss of expression experiments revealed that miR-675-5p inhibitio…

0301 basic medicineTranscription factor complexKaplan-Meier Estimatelcsh:Chemistry0302 clinical medicineGSK-3poxiahylcsh:QH301-705.5long non-coding H19Spectroscopybeta CateninKinaseChemistryGeneral MedicineCell HypoxiaComputer Science ApplicationsCell biologyGene Expression Regulation Neoplastic030220 oncology & carcinogenesisColorectal NeoplasmsProtein BindingActive Transport Cell Nucleuscolorectal cancermiR-675TransfectionCatalysisArticleInorganic Chemistry03 medical and health sciencesCell Line TumormicroRNAGene silencingHumansPhysical and Theoretical ChemistryMolecular BiologyGlycogen Synthase Kinase 3 betahypoxiaOrganic ChemistryRNAComputational Biologyβ-cateninHCT116 CellsMicroRNAs030104 developmental biologylcsh:Biology (General)lcsh:QD1-999Microscopy FluorescenceCateninMutationNuclear localization sequenceInternational Journal of Molecular Sciences
researchProduct

MiR-24 induces chemotherapy resistance and hypoxic advantage in breast cancer

2017

// Giuseppina Roscigno 1, 2, * , Ilaria Puoti 1, 2, * , Immacolata Giordano 1 , Elvira Donnarumma 3 , Valentina Russo 1 , Alessandra Affinito 1 , Assunta Adamo 1 , Cristina Quintavalle 1, 2 , Matilde Todaro 4 , Maria dM Vivanco 5 , Gerolama Condorelli 1, 2 1 Department of Molecular Medicine and Medical Biotechnology, “Federico II” University of Naples, Naples, Italy 2 IEOS, CNR, Naples, Italy 3 IRCCS-SDN, Naples, Italy 4 Department of Pathobiology and Medical Biotechnology, University of Palermo, Palermo, Italy 5 CIC bioGUNE, Centre for Cooperative Research in Biosciences, Derio, Spain * These authors have contributed equally to the paper as first authors Correspondence to: Gerolama Condore…

0301 basic medicinecancer stem cellsApoptosisStem cell markermedicine.disease_causemicroRNAs Breast cancer Cancer stem cells BimL FIH1Mixed Function OxygenasesAntineoplastic Agent0302 clinical medicineCell MovementTumor Cells CulturedCell Self RenewalMixed Function OxygenaseBimLmicroRNACell HypoxiamicroRNAsGene Expression Regulation NeoplasticOncology030220 oncology & carcinogenesisNeoplastic Stem CellsFemaleBreast NeoplasmAdult stem cellHumanResearch PaperFIH1BimL; FIH1; breast cancer; cancer stem cells; microRNAsAntineoplastic AgentsBreast Neoplasms03 medical and health sciencesBreast cancerbreast cancerDownregulation and upregulationCancer stem cellmicroRNAmedicineBiomarkers TumorHumansCell Proliferationbusiness.industryCancer stem cellApoptosiRepressor Proteinmedicine.diseaseHypoxia-Inducible Factor 1 alpha SubunitMolecular medicineRepressor Proteins030104 developmental biologyDrug Resistance NeoplasmImmunologyCancer researchNeoplastic Stem CellCisplatinCarcinogenesisbusiness
researchProduct